## Physics 1 (2003380) Scope and Sequence

<table>
<thead>
<tr>
<th>Unit</th>
<th>Standards</th>
<th>Suggested Timeframe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit 2: Kinematics/Motion in One Direction</td>
<td>SC.912.P.12.1, SC.912.P.12.2, SC.912.P.12.9, MAFS.912.N-VM.1.3</td>
<td>8 block or 16 traditional days</td>
</tr>
<tr>
<td>Unit 3: Vector Resolution and Motion in Two-Dimensions</td>
<td>SC.912.P.12.1, SC.912.P.12.2, SC.912.P.12.9, MAFS.912.N-VM.1.3</td>
<td>8 block or 16 traditional days</td>
</tr>
<tr>
<td>Unit 4: Newton’s Laws of Motion</td>
<td>SC.912.P.12.3, SC.912.P.12.7, SC.912.P.10.10</td>
<td>8 block or 16 traditional days</td>
</tr>
<tr>
<td>Unit 5: Circular Motion, Newton’s Law of Gravity, and Rotational Motion</td>
<td>SC.912.P.12.2, SC.912.P.12.4, SC.912.E.5.6, MAFS.912.N-VM.1.3</td>
<td>10 block or 20 traditional days</td>
</tr>
<tr>
<td>Unit 6: Impulse and Momentum</td>
<td>SC.912.P.12.5</td>
<td>6 block or 12 traditional days</td>
</tr>
<tr>
<td>Unit 7: Work and Energy</td>
<td>SC.912.P.10.3, SC.912.P.10.1, SC.912.P.10.2</td>
<td>6 block or 12 traditional days</td>
</tr>
<tr>
<td>Unit 8: Wave Properties</td>
<td>SC.912.P.10.18, SC.912.P.10.20, SC.912.P.10.21, SC.912.E.5.2, MAFS.K12.MP.7.1</td>
<td>7 block or 14 traditional days</td>
</tr>
<tr>
<td>Unit 12: Thermal Energy</td>
<td>SC.912.P.10.4, SC.912.P.10.5, SC.912.P.8.1, SC.912.P.10.2</td>
<td>7 block or 14 traditional days</td>
</tr>
</tbody>
</table>
GENERAL NOTES
Labatory investigations that include the use of scientific inquiry, research, measurement, problem solving, laboratory apparatus and technologies, experimental procedures, and safety procedures are an integral part of this course. The National Science Teachers Association (NSTA) recommends that at the high school level, all students should be in the science lab or field, collecting data every week. School laboratory investigations (labs) are defined by the National Research Council (NRC) as an experience in the laboratory, classroom, or the field that provides students with opportunities to interact directly with natural phenomena or with data collected by others using tools, materials, data collection techniques, and models (NRC, 2006, p. 3). Laboratory investigations in the high school classroom should help all students develop a growing understanding of the complexity and ambiguity of empirical work, as well as the skills to calibrate and troubleshoot equipment used to make observations. Learners should understand measurement error; and have the skills to aggregate, interpret, and present the resulting data (National Research Council, 2006, p.77; NSTA, 2007).

Special Notes:

Instructional Practices
Teaching from a range of complex text is optimized when teachers in all subject areas implement the following strategies on a routine basis:
1. Ensuring wide reading from complex text that varies in length.
2. Making close reading and rereading of texts central to lessons.
3. Emphasizing text-specific complex questions, and cognitively complex tasks, reinforce focus on the text and cultivate independence.
4. Emphasizing students supporting answers based upon evidence from the text.
5. Providing extensive research and writing opportunities (claims and evidence).

- Asking questions (for science) and defining problems (for engineering).
- Developing and using models.
- Planning and carrying out investigations.
- Analyzing and interpreting data.
- Using mathematics, information and computer technology, and computational thinking.
- Constructing explanations (for science) and designing solutions (for engineering).
- Engaging in argument from evidence.
- Obtaining, evaluating, and communicating information.

Additional standards/practices that are to be taught in this course:
- LAFS.1112.RST.1.1: Cite specific textual evidence to support analysis of science and technical texts, attending to important distinctions the author makes and to any gaps or inconsistencies in the account.
- LAFS.1112.RST.1.2: Determine the central ideas or conclusions of a text; summarize complex concepts, processes, or information presented in a text by paraphrasing them in simpler but still accurate terms.
- LAFS.1112.RST.1.3: Follow precisely a complex multistep procedure when carrying out experiments, taking measurements, or performing technical tasks; analyze the specific results based on explanations in the text.
- **LAFS.1112.RST.2.4**: Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 11–12 texts and topics.

- **LAFS.1112.RST.2.5**: Analyze how the text structures information or ideas into categories or hierarchies, demonstrating understanding of the information or ideas.

- **LAFS.1112.RST.2.6**: Analyze the author’s purpose in providing an explanation, describing a procedure, or discussing an experiment in a text, identifying important issues that remain unresolved.

- **LAFS.1112.RST.3.7**: Integrate and evaluate multiple sources of information presented in diverse formats and media (e.g., quantitative data, video, multimedia) in order to address a question or solve a problem.

- **LAFS.1112.RST.3.8**: Evaluate the hypotheses, data, analysis, and conclusions in a science or technical text, verifying the data when possible and corroborating or challenging conclusions with other sources of information.

- **LAFS.1112.RST.3.9**: Synthesize information from a range of sources (e.g., texts, experiments, simulations) into a coherent understanding of a process, phenomenon, or concept, resolving conflicting information when possible.

- **LAFS.1112.RST.4.10**: By the end of grade 12, read and comprehend science/technical texts in the grades 11–12 text complexity band independently and proficiently.

- **LAFS.1112.SL.1.1**: Initiate and participate effectively in a range of collaborative discussions (one-on-one, in groups, and teacher-led) with diverse partners on grades 11–12 topics, texts, and issues, building on others’ ideas and expressing their own clearly and persuasively.
  a. Come to discussions prepared, having read and researched material under study; explicitly draw on that preparation by referring to evidence from texts and other research on the topic or issue to stimulate a thoughtful, well-reasoned exchange of ideas.
  b. Work with peers to promote civil, democratic discussions and decision-making, set clear goals and deadlines, and establish individual roles as needed.
  c. Propel conversations by posing and responding to questions that probe reasoning and evidence; ensure a hearing for a full range of positions on a topic or issue; clarify, verify, or challenge ideas and conclusions; and promote divergent and creative perspectives.
  d. Respond thoughtfully to diverse perspectives; synthesize comments, claims, and evidence made on all sides of an issue; resolve contradictions when possible; and determine what additional information or research is required to deepen the investigation or complete the task.

- **LAFS.1112.SL.1.2**: Integrate multiple sources of information presented in diverse formats and media (e.g., visually, quantitatively, orally) in order to make informed decisions and solve problems, evaluating the credibility and accuracy of each source and noting any discrepancies among the data.

- **LAFS.1112.SL.1.3**: Evaluate a speaker’s point of view, reasoning, and use of evidence and rhetoric, assessing the stance, premises, links among ideas, word choice, points of emphasis, and tone used.

- **LAFS.1112.SL.2.4**: Present information, findings, and supporting evidence, conveying a clear and distinct perspective, such that listeners can follow the line of reasoning, alternative or opposing perspectives are addressed, and the organization, development, substance, and style are appropriate to purpose, audience, and a range of formal and informal tasks.

- **LAFS.1112.SL.2.5**: Make strategic use of digital media (e.g., textual, graphical, audio, visual, and interactive elements) in presentations to enhance understanding of findings, reasoning, and evidence and to add interest.
• **LAFS.1112.WHST.1.1**: Write arguments focused on discipline-specific content.
  a. Introduce precise, knowledgeable claim(s), establish the significance of the claim(s), distinguish the claim(s) from alternate or opposing claims, and create an organization that logically sequences the claim(s), counterclaims, reasons, and evidence.
  b. Develop claim(s) and counterclaims fairly and thoroughly, supplying the most relevant data and evidence for each while pointing out the strengths and limitations of both claim(s) and counterclaims in a discipline appropriate form that anticipates the audience’s knowledge level, concerns, values, and possible biases.
  c. Use words, phrases, and clauses as well as varied syntax to link the major sections of the text, create cohesion, and clarify the relationship between claim(s) and reasons, between reasons and evidence, and between claim(s) and counterclaims.
  d. Establish and maintain a formal style and objective tone while attending to the norms and conventions of the discipline in which they are writing.
  e. Provide a concluding statement or section that follows from or supports the argument presented.

• **LAFS.1112.WHST.1.2**: Write informative/explanatory texts, including the narration of historical events, scientific procedures/experiments, or technical processes.
  a. Introduce a topic and organize complex ideas, concepts, and information so that each new element builds on that which precedes it to create a unified whole; include formatting (e.g., headings), graphics (e.g., figures, tables), and multimedia when useful to aiding comprehension.
  b. Develop the topic thoroughly by selecting the most significant and relevant facts, extended definitions, concrete details, quotations, or other information and examples appropriate to the audience’s knowledge of the topic.
  c. Use varied transitions and sentence structures to link the major sections of the text, create cohesion, and clarify the relationships among complex ideas and concepts.
  d. Use precise language, domain-specific vocabulary and techniques such as metaphor, simile, and analogy to manage the complexity of the topic; convey a knowledgeable stance in a style that responds to the discipline and context as well as to the expertise of likely readers.
  e. Provide a concluding statement or section that follows from and supports the information or explanation provided (e.g., articulating implications or the significance of the topic).

• **LAFS.1112.WHST.2.4**: Produce clear and coherent writing in which the development, organization, and style are appropriate to task, purpose, and audience.

• **LAFS.1112.WHST.2.5**: Develop and strengthen writing as needed by planning, revising, editing, rewriting, or trying a new approach, focusing on addressing what is most significant for a specific purpose and audience.

• **LAFS.1112.WHST.2.6**: Use technology, including the Internet, to produce, publish, and update individual or shared writing products in response to ongoing feedback, including new arguments or information.

• **LAFS.1112.WHST.3.7**: Conduct short as well as more sustained research projects to answer a question (including a self-generated question) or solve a problem; narrow or broaden the inquiry when appropriate; synthesize multiple sources on the subject, demonstrating understanding of the subject under investigation.

• **LAFS.1112.WHST.3.8**: Gather relevant information from multiple authoritative print and digital sources, using advanced searches effectively; assess the strengths and limitations of each source in terms of the specific task, purpose, and audience; integrate information into the text selectively to maintain the flow of ideas, avoiding plagiarism and overreliance on any one source and following a standard format for citation.
- **LAFS.1112.WHST.3.9**: Draw evidence from informational texts to support analysis, reflection, and research.
- **LAFS.1112.WHST.4.10**: Write routinely over extended time frames (time for reflection and revision) and shorter time frames (a single sitting or a day or two) for a range of discipline-specific tasks, purposes, and audiences.
- **MAFS.912.N-Q.1.1**: Use units as a way to understand problems and to guide the solution of multi-step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays. ★
- **MAFS.912.N-Q.1.3**: Choose a level of accuracy appropriate to limitations on measurement when reporting quantities. ★
- **MAFS.912.F-IF.2.4**: For a function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; end behavior; and periodicity. ★
- **MAFS.912.F-IF.3.7**: Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases. ★
  a. Graph linear and quadratic functions and show intercepts, maxima, and minima.
  b. Graph square root, cube root, and piecewise-defined functions, including step functions and absolute value functions.
  c. Graph polynomial functions, identifying zeros when suitable factorizations are available, and showing end behavior.
  d. Graph rational functions, identifying zeros and asymptotes when suitable factorizations are available, and showing end behavior.
  e. Graph exponential and logarithmic functions, showing intercepts and end behavior, and trigonometric functions, showing period, midline, and amplitude, and using phase shift.
- **MAFS.912.G-MG.1.2**: Apply concepts of density based on area and volume in modeling situations (e.g., persons per square mile, BTUs per cubic foot). ★
- **MAFS.912.N-VM.1.3**: Solve problems involving velocity and other quantities that can be represented by vectors.
- **MAFS.912.S-ID.1.1**: Represent data with plots on the real number line (dot plots, histograms, and box plots). ★
- **MAFS.912.S-ID.1.2**: Use statistics appropriate to the shape of the data distribution to compare center (median, mean) and spread (interquartile range, standard deviation) of two or more different data sets. ★
- **MAFS.912.S-ID.1.3**: Interpret differences in shape, center, and spread in the context of the data sets, accounting for possible effects of extreme data points (outliers). ★
- **MAFS.912.S-ID.1.4**: Use the mean and standard deviation of a data set to fit it to a normal distribution and to estimate population percentages. Recognize that there are data sets for which such a procedure is not appropriate. Use calculators, spreadsheets, and tables to estimate areas under the normal curve. ★
- **MAFS.912.S-ID.2.5**: Summarize categorical data for two categories in two-way frequency tables. Interpret relative frequencies in the context of the data (including joint, marginal, and conditional relative frequencies). Recognize possible associations and trends in the data. ★

**Florida Standards for Mathematical Practice:**

Integrate Common Core Standards for Mathematical Practice (MP) as applicable:
- **MAFS.K12.MP.1.1** Make sense of problems and persevere in solving them.
- **MAFS.K12.MP.2.1** Reason abstractly and quantitatively.
- **MAFS.K12.MP.3.1** Construct viable arguments and critique the reasoning of others.
- **MAFS.K12.MP.4.1** Model with mathematics.
- **MAFS.K12.MP.5.1** Use appropriate tools strategically.
- MAFS.K12.MP.6.1 Attend to precision.
- MAFS.K12.MP.7.1 Look for and make use of structure.
- MAFS.K12.MP.8.1 Look for and express regularity in repeated reasoning.

**English Language Development Standards:**
- ELD.K12.ELL.SC.1 English language learners communicate information, ideas and concepts necessary for academic success in the content area of Science.
- ELD.K12.ELL.SI.1 English language learners communicate for social and instructional purposes within the school setting.

**English Language Development ELD Standards Special Notes Section:**
Teachers are required to provide listening, speaking, reading and writing instruction that allows English language learners (ELL) to communicate information, ideas and concepts for academic success in the content area of Science. For the given level of English language proficiency and with visual, graphic, or interactive support, students will interact with grade level words, expressions, sentences and discourse to process or produce language necessary for academic success. The ELD standard should specify a relevant content area concept or topic of study chosen by curriculum developers and teachers which maximizes an ELL's need for communication and social skills. To access an ELL supporting document which delineates performance definitions and descriptors, please click on the following link: [http://www.cpalms.org/uploads/docs/standards/eld/SC.pdf](http://www.cpalms.org/uploads/docs/standards/eld/SC.pdf)

**CPALMS:**
There are more than 616 related instructional/educational resources available for this on CPALMS. Click on the following link to access them: [http://www.cpalms.org/Public/PreviewCourse/Preview/13116](http://www.cpalms.org/Public/PreviewCourse/Preview/13116)

Additional Resources can be found in